A Novel Hybrid Self-Adaptive Bat Algorithm
نویسندگان
چکیده
منابع مشابه
A Novel Hybrid Self-Adaptive Bat Algorithm
Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enab...
متن کاملA hybrid bat algorithm
Iztok Fister Jr.,∗ Dušan Fister,† and Xin-She Yang‡ Abstract Swarm intelligence is a very powerful technique to be used for optimization purposes. In this paper we present a new swarm intelligence algorithm, based on the bat algorithm. The Bat algorithm is hybridized with differential evolution strategies. Besides showing very promising results of the standard benchmark functions, this hybridiz...
متن کاملSlope Stability Analysis Using a Self-Adaptive Genetic Algorithm
This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective ...
متن کاملGraph 3-coloring with a hybrid self-adaptive evolutionary algorithm
algorithm Iztok Fister,∗ Marjan Mernik,† and Bogdan Filipič‡ Abstract This paper proposes a hybrid self-adaptive evolutionary algorithm for graph coloring that is hybridized with the following novel elements: heuristic genotype-phenotype mapping, a swap local search heuristic, and a neutral survivor selection operator. This algorithm was compared with the evolutionary algorithm with the SAW met...
متن کاملGenetic Algorithms A Self Adaptive Hybrid Genetic Algorithm
This paper presents a self-adaptive hybrid genetic algorithm (SAHGA) and compares its performance to a non-adaptive hybrid genetic algorithm (NAHGA) and the simple genetic algorithm (SGA) on two multi-modal test functions with complex geometry. The SAHGA is shown to be far more robust than the NAHGA, providing fast and reliable convergence across a broad range of parameter settings. For the mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/709738